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INTRODUCTION 

Fuelled by a need to reduce viscous drag of airframes, significant 
advances have been made in the last decade to design lifting surface 
geometries with considerable amounts of laminar flow. Advances in production 
techniques and mater€als have allowed lifting surface geometries to be within 
required tolerances for laminar flow. Both availability of linear and 
nonlinear computational boundary-layer stability analysis methods and several 
recent swept-wing flight tests utilizing advanced transition instrumentation 
have resulted in definition of a geometric and aerodynamic matrix for 
applicability of natural laminar flow over swept and unswept wings. 

laminar flow over lifting surfaces, limited experimental results are 
available examining applicability of natural laminar flow over axisymmetric 
and nonaxisyrnmetric fuselage shapes at relevantly high length Reynolds 
numbers. This briefing will show the drag benefits attainable by realizing 
laminar flow over nonl if t ing aircraft components such as fuselages and 
nacelles. A status report is presented on a flight experiment being conducted 
in cooperation with Cessna Aircraft Company in Wichita, Kansas, to investigate 
transition location and transition mode over the forward fuselage of a light 
twin-engine propeller-driven airplane. 

Possible application areas for natural laminar flow over nonlifting 
aircraft components are given in Figure 1. 

In contrast to the present understanding of practical limits for natural 

APPLICATIONS FOR NL 
IN SUBSONIC COMPRESSIBLE FLOWS 

Figure 1 
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IRTRODUCTION (CONTINUED)

Application of laminar flow to lifting surfaces of transports will
increase the relative contribution of the turbulent fuselage to aircraft

viscous and total drag (see Figure 2), thus presenting a stimulus to reduce

viscous drag of the fuselage. In reference 1 an estimate is presented of the

decrease in total aircraft drag when a laminar boundary l_yer is realized over

the above indicated fuselage area. The geometry of the fcrward fuselage of a

typical transport aircraft provides a favorable accelerating pressure gradient

from the nose up to the beginning of the cylindrical cabin section on the

sides and bottom of the fuselage and after the windshield on top of the

fuselage (see reference 2). Additional benefits of a laminar run over the

initial portion of the fuselage are a reduction in turbulent drag over the

remainder of the fuselage (and possible greater ease of scaling large-eddy

break-up devices for turbulent drag reduction) and relief of the wlng-fuselage

interaction problem. Axisymmetric nacelles of recently introduced hlgh-bypass

unducted-fan engines and external fuel tanks can be shaped to sustain large

amounts of laminar flow, particularly at compressible flight speeds.

Significant runs of laminar flow are predicted in reference 3 for business-jet

and commuter-type fuselages when appropriate body shaping is available. At

compressible flight conditions (M = 0.60 and up) as much as 30- to 40-percent

of the fuselage length is predicted to be capable of sustaining a sufficiently

stable laminar boundary layer (reference I).
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BENEFITS OF NATURAL LAMINAR FLOW

Drag benefit for maintaining laminar flow over the first 30 percent of an

advanced business-jet type fuselage can amount to 7-percent in total (viscous

and induced) aircraft drag (Figure 3). By comparison, realization of laminar

flow over 40 to 50 percent of wing chord results in 12-percent total drag

reduction. These drag reductions are compared to fully turbulent

configurations. Reference 4 presents a detailed assessment of performance and

operating cost improvements for achieving laminar flow over different

components of a typical commuter aircraft. Figure 3 also indicates a 2-

percent drag reduction for maintaining a laminar boundary layer over turbofan

engine nacelles. Reference 5 presents a status report of a flight experiment

investigating stability of the laminar boundary layer over a turbofan nacelle

under varying acoustical environments.

Drag reduction as percent of total

Extent of NLF

Empennag,

Wing-12% Nacelles-2%

-Fuselage-7%

Total NLF drag benefit-24%

Figure 3
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NLF BODY DESIGN OONSIDERATIONS

Figure 4 presents a road map of transition mechanisms that can affect the

stability and extent of natural laminar flow over a fuselage. The stability

of a laminar boundary layer (in absence of suctiou or wall cooling) is derived

from the magnitude of pressure gradients along the body surface in axial and

circumferential directions at a given unit Reynolds number and free-stream Mach

number. Energy from sound and turbulence in the environment can be entrained

into the laminar boundary layer and lead to increased amplification growth of

disturbances in the laminar layer (receptivity problem). Manufacturing

excrescences on the fuselage surface can induce strong destabilizing

disturbances in the boundary layer, resulting in immediate transition (bypass

mechanism), and can generate large local pressure gradients which allow sound

and turbulence to be entrained (receptivity).

• Body shape for axial and circumferential pressure

gradients (Toilmten-Scnlichttng and crossflow instabilities)

• Noise and turbulence environment (receptivity)

• Manufacturing tolerances (bypasses)

• Reynolds number

• MocN number (flow compressibility)

Figure 4
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FAST INCOMPRESSIBLE BODY TRANSITION EXPERIMENTS

Past experimental transition results are mainly available for

axlsymmetrlc incompressible (underwater) body shapes. Wind-tunnel results at

high subsonic Mach number (Reference 6) pertain to low length Reynolds

numbers. Figure 5 presents the measured extent of natural laminar flow

(expressed as a transition Reynolds number based on axial length) as a

function of the body fineness ratio F., defined as ratio of body length to

body diameter for incompressible condztlons. A decrease of body fineness

ratio leads to an increase in axial pressure gradients for a body with

constant internal volume. Figure 5 shows that a large increase in the amount

of laminar flow is obtained when fineness ratio is reduced. Reference 7

presents results of some of the Iow-flneness-ratlo findings indicated in this

figure. Fuselages of buslness-jet and commuter type aircraft are

characterized by fineness ratios of 5 to 9. Figure 5 also shows that limited

experimental results are available for axisymmetric shapes in this design

area. However, some of the forebody shapes tested are typical for underwater

applications. No experimental results are available for nonaxisy_etric

geometries at relevant length Reynolds numbers to define practical limits for

NLF design factors given in Figure 4.

10

Body
fineness ratio, 5

FR = (L/d)

Boltz-Pfenninger (1956)

e __-e_ Carmichael (1965)

I I I I
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Body transition length-Reynolds number R TR

Figure 5
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IS 
NASA/cESSNA T-303 HLF FUSELAGE FLIGHT EXPERIMFtNTS 

To i n v e s t i g a t e  the  ex ten t  and s t a b i l i t y  of laminar flow over a p r a c t i c a l  
nonaxisymmetric fuse l age  a f l i g h t - t e s t  program has been s t a r t e d  i n  coopera t ion  
wi th  Cessna A i r c r a f t  Company using a Cessna T303 “Crusader“ l i g h t  twin-engine 
propel le r -dr iven  a i r c r a f t  (F igure  6). Pre l iminary  a n a l y s i s  of a x i a l  p ressure  
g r a d i e n t s  over the  o r i g i n a l  fu se l age  forebody ind ica t ed  a s t rong  p o t e n t i a l  f o r  
laminar flow i n  c r u i s e  and climb condi t ions .  The ind ica t ed  nose su r face  
c o n s t i t u t e s  about 5 percent of the  t o t a l  fu se l age  wetted area. The production- 
q u a l i t y  forebody (pa in ted  black i n  Figure 6 f o r  f low-visua l iza t ion  
obse rva t ions )  requi red  smoothing with body f i l l e r  and subsequent sanding of 
r i v e t  l i n e s  and l a p  j o i n t s  t o  prevent premature t r a n s i t i o n .  Proximity of the 
p rope l l e r  propulsion system t o  the  forebody allows study of poss ib l e  e f f e c t s  
of p r o p e l l e r  and engine noise  on mode and l o c a t i o n  of t r a n s i t i o n  over the 
fuse l age  nose. F igure  6 a l s o  shows the  wing-mounted boom f o r  s t a t i c  and t o t a l  
r e f e rence  p res su res  and angle-of-attack and angle-of -s ides l ip  i n d i c a t o r s .  

F igure  6 
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T-303 NLF FUSELAGE FLIGHT EXPERIMENT

Installed transition instrumentation on the T303 forebody is given in

Figure 7. Pressure port lines along 7 meridian lines measure the pressure

field over the nose and possible streamtube effects in the proximity of the

propeller plane. Location of transition and extent of the transition process

is measured by 3 lines of staggered surface hot films, one line on top, port

and starboard side of the fuselage nose respectively. The slgnal-to-noise

characteristics of these high-impedance hot films will allow spectral analysis

of the signal to identify energy distribution in the frequency domain of each

hot film. To identify and quantify the external environment to which the

laminar boundary layer is subjected, 3 flush mounted microphones are installed

in the nose area and a single-wire free-stream-turbulence probe is mounted near

the port wing tip. Engine and propeller power and RPM settings are also

measured by the onboard data system.

• 7 surfoce pressure port lines (140 ports)
- Nose pressure distribution
- Propeller streomtube effect

• 39 stoggered M&M50_ hot films
- Boundory-loyer intermittency
- Spectrol content (T,S, Frequencies)

• 3 Flush mounted B&K microphones
- Acoustic environment

• TSI freestreom turbulence probe
- Turbulence environment

• Propellers ond gos generotor RPMond power settings

Figure 7
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_OUNDARY-LAYER STABILII"/ ANALYSIS OVER NOIIAXXSMTRIC

FUSEI,_E FOREBODY

Computational assessment of stability of the laminar boundary layer over

the fuselage forebody is carried out along the steps indicated in Figure 8.

Invlscid surface pressure distributions are determined for the complete

fuselage geometry. Using a quasi-axisymmetric approach the laminar boundary-

layer development is determined using a finite-difference scheme. Streamwise

Tollmlen-Schlichting (T.S.) stability is determined using the boundary-layer

profiles calculated by the finite-difference method. In the present briefing

only an assessment of the T.S. stability is presented. A full three-

dimensional analysis of stability of the laminar boundary layer (i.e.,

including the effect of boundary-layer cross flow) will be commenced as soon as

the required computational tools are available to the authors.

• Inviscid pressure distribution

• Axisymmetric-analogue approach

- Quasi-oxisymmetric boundary-layer analysis

- Tollmien-Schlichting stability analysis

• Full three-dimensional approach

- 3-D boundary-layer analysis

- Tollmien-Schlichting and crossflow stability analysis

Figure 8
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T303 FUSELAGE FREBODY ANALYSIS 

Figure 9 shows t h e  i n v i s c i d  pressure  d i s t r i b u t i o n  over t h e  T303 forebody 
as predicted by the  VSAERO panel method (Reference 8) a t  t h e  ind ica ted  f l i g h t  
condi t ions.  
g r a d i e n t  (flow a c c e l e r a t i o n )  i n  t h e  a x i a l  d i r e c t i o n  from the  nose ( s t a g n a t i o n  
a r e a )  towards the  windshield.  On top of t he  fuse lage  a pressure recovery near  
t h e  windshield can be observed r e s u l t i n g  i n  an adverse a x i a l  p ressure  g r a d i e n t  
towards the  windshield.  A moderate pressure grad ien t  i s  predic ted  i n  t h e  
c i r c u m f e r e n t i a l  d i r e c t i o n  €rom the  symmetry l i n e  t o  the  s i d e  of the  
fuselage.  These c i rcumferent ia l  g r a d i e n t s  w i l l  induce curva ture  of t h e  
s t reaml ines  and can r e s u l t  i n  boundary-layer c r o s s  flow and p o s s i b l e  cross-flow 
i n s t a b i l i t y .  

The pressure  contour p l o t s  show a moderately favorable  p r e s s u r e  

INVISCID PRESSURE DISTRIBUTION (VSAERO CODE) 

-O,4BQ 

-0.318 

-Us 153 

0.344 
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T303 RLF PUSELAGE FLIGHT EXPERIMENT

COMPARISON OF MEASUEED AND CALCULATED PRESSURE IESTRIBUTIONS

Figure lOa presents a comparison of the VSAERO prediction and the

measured pressure distribution along meridians at 0 and 45 degrees radials at

zero angles of attack and sideslip. Figure IOb gives the comparison for the

pressure lines on both sides of the fuselage. A good agreement can be

observed between the measurements and the calculations for this flight

condition. The effect of a surface wave near the radome joint at FS 44.0

along the 0 degrees radial can be observed in the measured pressure

distribution (Figure lOa). The effect of the propellers and propeller-

rotation direction on the pressure distribution can be seen in Figure 10b.

The rotation sense of both propellers is counter clockwise when looking from

the nose to the tail of the fuselage. Consequently, a local acceleration and

deceleration is measured near the propeller plane on the port side and

starboard side respectively, due to superposition of the propeller-lnduced
flowfield over the basic flowfleld over the nose.
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T303 FUSELAGE FOREBODY ANALYSIS 
I N V I S C I D  CROSS-FLOW VELOCITY DISTRIBUTION (VSAERO CODE) 

Figure  11 shows t h e  VSAERO pred ic t ion  of i n v i s c i d  su r face  v e l o c i t i e s  i n  
c i r c u m f e r e n t i a l  d i r e c t i o n s  f o r  two angles of a t t a c k  ( ze ro  s i d e s l i p )  over the  
nonaxisymmetric T303 fuse lage .  A t  zero angle of a t t a c k  a l i n e  of ze ro  
c r o s s  f low can be observed near  t h e  45 degree r a d i a l  p o s i t i o n .  
top of the  fuse lage  nose between t h i s  l i n e  and the  v e r t i c a l  symmetry plane a 
c i r c u m f e r e n t i a l  (nega t ive )  c r o s s  flow towards t h e  symmetry p lane  is  
predic ted .  For r a d i a l  p o s i t i o n s  t o  the  l e f t  of t h i s  l i n e  the  i n v i s c i d  
c i r cumfe ren t i a l  flow is pos i t i ve .  Exis tence  of r e v e r s a l  of i n v i s c i d  cross-flow 
vec tors  p re sen t s  formidable numerical problems €or three-dimensional boundary- 
l a y e r  s o l v e r s ,  as d iscussed  i n  Reference 9. An inc rease  i n  angle of a t t a c k  
( s e e  r i g h t  s i d e  of F igure  11) r e s u l t s  i n  an inc rease  i n  magnitude of 
c i r c u m f e r e n t i a l  v e l o c i t i e s  and a s h i f t  of the  r e v e r s a l  l o c a t i o n  t o  the  lower 
quadrant of the  fuse l age  nose. The magnitude of i n v i s c i d  c r o s s  flow and i t s  
p o t e n t i a l  e f f e c t s  on three-dimensional boundary-layer s t a b i l i t y  can be 
assessed t o  f i r s t  o rder  by r e l a t i n g  the  magnitude of i n v i s c i d  c r o s s  flow 
p red ic t ed  f o r  the fuse l age  t o  the cross-flow magnitude over a swept wing. An 
i n v i s c i d  cross-flow v e l o c i t y  VR/Uinf = .250 occurs i n  t h e  leading-edge reg ion  
of a wing with 15 degrees sweep. From previous laminar-flow experiments on 
swept wings i t  is  known t h a t  c r o s s  flow becomes t h e  dominant i n s t a b i l i t y  
phenomenon only i f  wing leading-edge sweep is l a r g e r  than 20 t o  25 degrees.  

I n  t h e  area on 

Figure 11 
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WAICESSNA T303 lap FUSELAGJI FLIGHT EXPERIMENTS 

Figure 12a and 12b show the  ex ten t  of laminar flow and the  l o c a t i o n  of 
the  t r a n s i t i o n  f r o n t  as ind ica ted  by the res idue  of sublimating chemical 
(naphthalene) a t  V = 170 k t s  a t  10,000 f t .  On top of the  fuse lage  nose 
t r a n s i t i o n  occurs about 12 inches ahead of the  p rope l l e r  plane (F igure  12b). 
I d e n t i f i c a t i o n  of t r a n s i t i o n  ex ten t  on the  por t  s i d e  of the  fuse l age  was 
impossible due t o  roughness t r a n s i t i o n  near the  nose during t h i s  f l i g h t  ( s e e  
f i g u r e  12a). T r a n s i t i o n  ex ten t  on the s t a rboa rd  fuse lage  s i d e  (not  shown 
he re )  is similar t o  the l o c a t i o n  on top. Note the  e f f e c t  of sweep of t he  
lead ing  edge of the  masking-tape s t r i p s ,  used as coord ina te  sys tem re fe rences ,  
on t r a n s i t i o n :  t r a n s i t i o n  as evidenced by a tu rbu len t  wedge occurs 1 t o  2 
inches behind the beginning of the  t a p e ,  suggesting a r e l i e v i n g  e f f e c t  on t h e  
roughness he ight  as perceived by the laminar boundary layer due t o  the  sweep 
angle (See Reference lo ) .  

F igure  12a 
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Figure 12b 
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T303 FUSELAGE FOREBODY ANALYSIS

TOLLMIEN-SCHLICHTXNG STABILITY ANALYSIS - AXISY_4ETRIC ANALOGUE APPROACH

For three streamlines over the top, side, and lower quadrant of the

fuselage forebody (indicated as SI, $2 and $3 respectively in Figure 13),

boundary-layer development has been calculated using an axisymmetric analogue

approach. For each streamline, an equivalent axlsymmetric body shape is

defined using axial and radial coordinates of the streamline as meridian.

This approach is justified in the absence of strong streamline divergence and

boundary-layer cross flow (Reference ii). The axisymmetric boundary-layer

development along each streamline is calculated using a modified version of

Harris's method (Reference 12). Using a spectral method (Reference 13), the

incompressible linear Tollmlen-Schlichting stability of the laminar boundary

layer is determined for each streamline along the body surface for a range of

disturbance frequencies at the indicated unit Reynolds number. Figure 13a

shows the frequency envelopes for the three streamlines as function

of axial nose distance. Most amplified T.S. disturbance frequencies range

from 1750 to 3000 Hz for the given flight condition. By comparison, the

fundamental propeller and generator turbine frequencies are approximately I00

Hz and 800 Hz, respectively. A logarithmic amplification factor ("n-factor")

of 9 is predicted in the region of the propeller plane at R' =1,400,000 at

zero angle of attack (Figure 13a). Using the en-stability method as a

transition prediction tool, and n=9 as criterion for transition onset,

transition due to T.S. instability is expected to start near the propeller

plane in the absence of exterior disturbances (noise of appropriate frequency

and energy levels, free-stream turbulence, and manufacturing imperfections).

The observed transition front at a slightly higher unit Reynolds number in

Figure 12 corresponds to a calculated "n-factor" of about 6 to 8 in Figure

13a.

Figure 13b shows the calculated T.S. amplification factors along

streamlines at an angle of attack of 5 degrees. An "n-factor" of 9 is

predicted to occur slightly ahead of the propeller plane over the top of the

fuselage forebody, while a lower T.S. instability growth is predicted over

the lower quadrant of the nose due to an increased favorable axial pressure

gradient at positive angle of attack.
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T303 FUSELAGE FOREBODY ANALYSIIS

[oilmlen-SchliChting Stability Analysis,

Axisymmetric Analogue Approach
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T303 NLF FUSELAGE FLICHT EXPERIMENT
HOT-FILM BOUNDARY-LAYER TU]_ULKNCK II_'I_RMITTENCY

Figure 14a and 14b show the observed turbulent intermittency of the hot-

film signals over the top and starboard side of the fuselage nose respectively

for a flight condition similar to the one shown in Figure 13 (R'=I,700,000).

Hot-film intermittency shows transition to occur about 1 foot upstream of the

propeller plane (transition location being defined here by 50-percent

intermittency) in agreement with the flow visualization pattern. Note a

reduction in Intermlttency from 65 to 50 percent downstream of the propeller

plane (indicated by the solid symbol in the intermlttency plot) in this flight

condition on both top and side of the fuselage nose. The local favorable

pressure gradient immediately behind the propeller plane (see Figure lOa and

IOb) might explain the observed reduction in turbulence intermlttency. Higher

turbulent intermittency for the third hot film in both arrays is attributed to

turbulent contamination of the previous hot film and its lead wires in the

staggered array.
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Figure 14a
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T303 NLF FUSELAGE FLIGHT EXPERIMENT

Hot Film Boundary-Layer Turbulence Intermittency
o_ _ 0 ° , _ = O, R'= 1,700,000
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Figure 14b
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T303 NLF FUSELAGE FLIGHT EXPERIMENT
HOT-FILM BOUNDARY-LAYER TURBULENCE L'qTERMITTENCY

Turbulent intermittencies obtained for both hot-film arrays are shown for
a reduced unit Reynolds number R' = 800,000 at zero angle of attack in Figure

15a and 15b. Decrease in Reynolds number for this flight condition results in

a large increase in laminar run on both top and side of the fuselage.

Transition onset is indicated to occur behind the propeller plane, while

Intermlttencies in the turbulent boundary layer beyond FS 90 grow to levels

over 80 percent, in contrast to the levels indicated in Figures 14 at the

higher unit Reynolds number.
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Figure 15a
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T303 NLF FUSELAGE FLIGHT EXPERIMENT

Hot Film Boundary-Layer Turbulence Intermittency
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T303 MLF I_JSELAGE PLIGHT EXPERIMENT

PRELIMINARY FLIGHT-TEST RESULTS

CONTINI]ATION FLIGHT-TEST PROGRAH

The results from only a limited number of flights and initial data

reduction are summarized in Figure 16a. Continuation of the flight program is

planned to explore the location and mode of transition on this nonaxlsymmetrlc

fuselage shape under varying flight conditions as indicated in Figure t6b.

The prototype airplane used in this program allows for extended glide flight

with wlnd-milling propellers and stopped generators. Study of transition

location without streamtube and noise effects of the propellers and generators

provides an opportunity to assess acoustic receptivity phenomena in the

boundary layer under study. Subsequent analysis of microphone and hot-film

signals in time and frequency domain is planned to help understanding of the

transition process under varying flight conditions. Analysis of stability of

the laminar boundary layer over the fuselage nose using a full three-

dimensional method can determine in detail the significance of cross flow in

the location of transition as measured wlth the hot films.

Preliminary Flight Test Results

• Agreement pressure distribution calculation with
measurement at _=0 ° (6=0 °)

• Observed extent of laminar boundary layer at _=0 °

(#=0 °) is 2,5 to 4,5 ft along surface:

RTR = 2,0-5,0 million

• Calculated T,S, amplification factor is 6-9

tn observed transition range

Figure 16a

Continuation Flight Test Program

• Planned flight matrix

-2° < o_ < 7,5 °

-i0 o < _ < i0o

750,000 < R' < 2,500,000

Propeller/generator power setting/RPM

(including glide flights)

• Spectrol analysis hot film ond microphone signols

• [dentif|cotion tronsition mode(s)

Figure 16b
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EFFECT OF FLIGHT ALTITUDE ON UNIT REYNOLDS NUMBER

The transition observations over the nonaxisymmetrlc fuselage shape

obtained in this flight program are obtained at low Mach numbers (0.20 to

0.35) and flight altitudes from 5,000 to 20,O00ft, resulting in unit Reynolds

numbers of 750,000 to 2,500,000 per foot (Figure 17). Typical flight

conditions of subsonic (and supersonic) transports occur at comparable unit

Reynolds numbers, however, at considerably higher flight altitudes and Mach

numbers. As demonstrated in Reference I for a business-jet type body shape,

Tollmien-Schlichting stability of the axisymmetric laminar boundary layer is

greatly increased when Math number increases to 0.80 as compared to

incompressible conditions. Transition length Reynolds numbers of 20 million

(see Figure 5) and higher seem possible at high-subsonic flow conditions when

the favorable effect of flow compressiblity on boundary-layer stability is

included. Study of effects of nonaxisymmetry and noise on transition location

over a practical fuselage shape, which are investigated in the present flight

program, is relevant to assess the achievability of substantial amounts of

sufficiently stable laminar flow over the geometries indicated in Figure I.

Altitude, h (K ft)

7x10 e

6

0 10

/
Unit Reynolds 5 / _/_/_'/-'/ 20

.,/_,,i 30number, R I (f{- 1) 4 ./_'//"

50

0 .2 .4.6.8 1.0,1.21.4

Mach numberr, M

Figure 17
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RESKAItCH NERDS FOR L_NAR FLOW OVER FUSKLACES

The present study is the first flight investigation of stability of

natural laminar flow over a practical nonaxisymmetric fuselage shape under

varying free-stream conditions. Figure 18 indicates areas where further work

is needed to understand the transition process over nonaxisymmetric fuselage

geometries and to define application limits for laminar flow over body shapes

in a fashion similar to the limits currently emerging for laminar flow over

swept and unswept lifting surfaces. Detailed microscopic boundary-layer

development and boundary-layer stability measurements are needed on bodies at

sufficiently high length Reynolds numbers in a large low-turbulence ground

facility as well as in flight to assess adequacy of boundary-layer and

boundary-layer stability calculation methods. Similarly, wlnd-tunnel and

flight experiments are required to investigate the stability of laminar flow

over nonaxisymmetrlc bodies at subsonic and supersonic flight conditions.

Only very limited studies of effects of manufacturing imperfections on the

stability of laminar flow over fuselage geometries have been published.

Waviness and step tolerances derived for wing-like geometries (Reference I0)

need to be assessed for fuselage geometries which in general are characterized

by axial pressure gradients that are less favorable than pressure gradients

present over wings.

• Development anO application of 3-D boundary-layer

and boundary-layer stability codes for

fuselage geometries

• Detailed 3-D boundary-layer measurements on

bodies at high Reynolds numbers

• Body experiments at compressible flow conditions

• Study of NLF manufacturing tolerances for

body geometries

Figure 18
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